Аннотация к рабочей программе по химии 10-11 класс

(базовый уровень)

Рабочая программа по химии (базового уровня) для 10-11 х классов составлена на основе Федерального Закона «Об образовании в Российской Федерации» от 29.12.2012 №273 ФЗ, фундаментального ядра общего образования; примерной ООП СОО, одобренной решением Федерального учебно- методического объединения по среднему общему образованию, в соответствии с требованиями ФГОС СОО по химии; рабочей программы М.Н. Афанасьевой, предназначена для предметной линии учебников Г.Е. Рудзитиса и Ф.Г. Фельдмана 10-11 классы.

Программа отражает идеи и положения Концепции духовно-нравственного развития и воспитания личности гражданина России, программы формирования универсальных учебных действий (УУД), составляющих основу для саморазвития и непрерывного образования, выработки коммуникативных качеств, целостности общекультурного, личностного и познавательного развития учащихся.

В программе учитывается то, что образование на уровне среднего общего образования призвано обеспечить обучение с учетом потребностей, склонностей, способностей и познавательных интересов учащихся.

Программное содержание определяется исходя из требований ФГОС СОО к уровню подготовки учащихся, а также временем, отведенным федеральным учебным планом (в 10-11 классах 2 часа в неделю – 140 часов).

Реализация рабочей программы по предмету может осуществляться в форме электронного обучения и дистанционных образовательных технологий (Дневник.ру, Российская Электронная школа, Мобильное электронное образование, Учи.ру, Яндекс.учебник, Я-класс, Инфоурок).

Учебно-методический комплекс (УМК):

- 1. Рудзитис Г.Е., Фельдман Ф.Г. Химия. Базовый уровень. 10 класс. М.: Просвещение, 2020;
- 2. Рудзитис Г.Е., Фельдман Ф.Г. Химия. Базовый уровень. 11 класс. М.: Просвещение, 2020.

Учебный план (количество часов)

- 10 класс 2 часа в неделю, 68 часов в год
- 11 класс 2 часа в неделю, 68 часов в год

Планируемые результаты изучения учебного предмета «Химия»:

личностные результаты:

- в ценностно-ориентационной сфере воспитание чувства гордости за российскую химическую науку, гуманизма, целеустремленности;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной сфере умение управлять своей познавательной деятельностью. *Метапредметными* результатами освоения выпускниками основной школы программы по химии являются:
- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;

- использование различных источников информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата. В области познавательных результатов образовательное учреждение общего образования предоставляет ученику возможность на ступени среднего (полного) общего образования научиться:
- давать определения научным понятиям;
- описывать демонстрационные и самостоятельно проводимые эксперименты, используя для этого естественный (русский) язык и язык химии;
- описывать и различать изученные классы неорганических и органических соединений, химические реакции;
- классифицировать изученные объекты и явления;
- наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
- делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
- структурировать изученный материал;
- интерпретировать химическую информацию, полученную из других источников;
- описывать строение атомов элементов I-IV периодов с использованием электронных конфигураций атомов;
- моделировать строение простейших молекул неорганических и органических веществ, кристаллов;

Предметные результаты:

Выпускник научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека;
- демонстрировать на примерах взаимосвязь между химией и другими естественными науками;
- раскрывать на примерах положения теории химического строения А.М. Бутлерова;
- понимать физический смысл Периодического закона Д.И. Менделеева и на его основе объяснять зависимость свойств химических элементов и образованных ими веществ от электронного строения атомов;
- объяснять причины многообразия веществ на основе общих представлений об их составе и строении;
- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- характеризовать органические вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- приводить примеры химических реакций, раскрывающих характерные свойства типичных представителей классов органических веществ с целью их идентификации и объяснения области применения;
- прогнозировать возможность протекания химических реакций на основе знаний о типах химической связи в молекулах реагентов и их реакционной способности;
- использовать знания о составе, строении и химических свойствах веществ для безопасного применения в практической деятельности;
- приводить примеры практического использования продуктов переработки нефти и природного газа, высокомолекулярных соединений (полиэтилена, синтетического каучука, ацетатного волокна);

- проводить опыты по распознаванию органических веществ: глицерина, уксусной кислоты, непредельных жиров, глюкозы, крахмала, белков в составе пищевых продуктов и косметических средств;
- владеть правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- приводить примеры гидролиза солей в повседневной жизни человека;
- приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- приводить примеры химических реакций, раскрывающих общие химические свойства простых веществ металлов и неметаллов;
- проводить расчеты на нахождение молекулярной формулы углеводорода по продуктам сгорания и по его относительной плотности и массовым долям элементов, входящих в его состав;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научнопопулярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- представлять пути решения глобальных проблем, стоящих перед человечеством: экологических, энергетических, сырьевых, и роль химии в решении этих проблем. Выпускник получит возможность научиться:
- иллюстрировать на примерах становление и эволюцию органической химии как науки на различных исторических этапах ее развития;
- использовать методы научного познания при выполнении проектов и учебноисследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной с целью определения химической активности веществ;
- устанавливать генетическую связь между классами органических веществ для обоснования принципиальной возможности получения органических соединений заданного состава и строения;
- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний.